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We find analytic upper and lower bounds of the Lyapunov exponents of the 
product of random matrices related to the one-dimensional disordered Ising 
model, using a deterministic map which transforms the original system into a 
new one with smaller average couplings and magnetic fields. The iteration of the 
map gives bounds which estimate the Lyapunov exponents with increasing 
accuracy. We prove, in fact, that both the upper and the lower bounds converge 
to the Lyapunov exponents in the limit of infinite iterations of the map. 
A formal expression of the Lyapunov exponents is thus obtained in terms of the 
limit of a sequence. Our results allow us to introduce a new numerical procedure 
for the computation of the Lyapunov exponents which has a precision higher 
than Monte Carlo simulations. 

KEY WORDS: Random Ising model; one-dimensional; Lyapunov exponents; 
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INTRODUCTION 

In recent years products of random matrices have become a contact point  
between different fields, such as disordered and chaotic dynamical  systems. 
In that context the Lyapunov characteristic exponents represent physically 
important  quantities (for a general review see refs. 1 and 2). However, even 
in simple situations, the direct calculation of the Lyapunov spectrum is a 
very difficult problem, which is exactly solved only for few particular cases. 
On the other hand,  many  different approaches have been developed in 
order to give analytic approximations of the Lyapunov exponents/2~ 

The one-dimensional  r andom Ising model is a disordered system where 
the explicit form of the Lyapunov exponents (related to the free energy and 
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to the rate of the correlation decay) is not known, in spite of the simple 
expression of the matrices involved. Recently, we have proposed t3) an 
analytic solution of the model by the determination of the fixed point of a 
deterministic map which reduces the system to a new one-dimensional Ising 
model, with smaller average values of the random quenched variables. In 
this paper, we modify that map to make it appropriate to prove various 
statements which have been only conjectured on a heuristic basis in ref. 3. In 
particular, our new map transforms the system into a new one which always 
has real couplings and fields, in contrast with ref. 3. 

The main results of the paper are thus the following: 

1. Rigorous upper and lower bounds of the Lyapunov exponents 
whose precision increases with the number of map iterations. 
From a numerical point of view, we get very accurate estimates 
(better than those obtained by other numerical methods) in the 
case of discrete disorder distributions. 

2. The proof  of the convergence of these bounds toward the two 
Lyapunov exponents in the limit of infinite map iterations. 

3. The formal expression of the Lyapunov exponents can be also 
characterized via the convergence of the map toward a fixed point 
before performing the thermodynamic limit, in a restricted 
ensemble of disorder realizations. Then, the infinite-volume limit 
can be performed since that ensemble is constructed in such a way 
that it has full probability measure. 

The paper is organized as follows: 
In Section 1, there is a brief introduction to the random Ising model. 

In Section 2, we describe the deterministic map which reduces the average 
values of the couplings and of the magnetic fields of the Ising model. In 
Section 3, we find a formal expression of the Lyapunov exponents as func- 
tions of a coupling J*,  related to the fixed point of the map. In Section 4, 
rigorous upper and lower bounds of the Lyapunov exponents are obtained 
by a finite number n of iterations of the map. These bounds can be exactly 
computed and in limit n ~ ~ they converge to the Lyapunov exponents. 
They are explicitly calculated for a dichotomic distribution of the magnetic 
fields. In Appendix A, we show that the formal expression of the Lyapunov 
exponents can be also obtained in a rigorous context by inverting the ther- 
modynamic limit and the limit over the map iterations. Appendix B proves 
the convergence of the map to a stable fixed point, while Appendix C is a 
miscellanea of proofs of various statements used in the paper. 
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1. THE A P P R O A C H  OF R A N D O M  T R A N S F E R  M A T R I C E S  

The Hamiltonian HN of N spins {ai= +1}i=1, . . . ,  N o n  a one-dimen- 
sional lattice with periodic boundary conditions {ae+ N = ae} is of the type 

N N 

--finN= E Ji~176 + E hicri 
/ = 1  / = 1  

where fl is the inverse temperature, and where the N couples of nearest- 
neighbor couplings Je and external magnetic fields he are independent 
identically distributed random variables with probability measure/z(Je, he). 
The previous definitons of the Je and the h i include a factor fl with respect 
to the usual ones, in order to simplify the notation. 

The partition function ZN = Tr exp( -- finN) depends on the particular 
realization {Je, he}, and it can be written as the trace of the product of N 
random transfer matrices: 

N 

ZN = T r  1--[ Ai (1.1) 
e = l  

with 

Ai=\e_j~_h, eJi_h, ] (1.2) 

An important physical quantity, the quenched free energy f, is directly 
related to 21 = -fif ,  the maximum Lyapunov exponent, defined as 

N 

21=1i  lnTr  I-I A; (1.3) 
e = l  

where : represents the average over the disorder probability distribution 
I-I;/~(Je, h;). To simplify the notation, we often omit the subscript i, and J, 
h indicate the generic random variables Je, he. 

The difficulty in computing ;t~ is due to the presence of the logarithm 
function inside the average. A simple but rather poor upper bound of the 
maximum Lyapunov exponent can be obtained by moving the logarithm 
outside the disorder average. This is the so-called annealed average 

N 

L = lim In Tr I-[ Ai (1.4) 
N ~ o D  

i = 1  
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Calling A the generic random matrix of type (1.2) depending on J and 
h, if/~(J, h) is irreducible, 3 and with the request 

In + I I A I l = l n [ e J c o s h h + ( e ~ s i n h 2 h + e - 2 J ) l / 2 ] < o o  (1.5) 

where we have used the eigenvalue of A with maximum modulus as matrix 
norm, the Furstenberg theorem t4) assures that for/l(J,  h)-almost all (/~-a.a.) 
the possible products (a part a set of zero probability measure) one has 

N 

lim lnTr  l--I A~=,I~ /~-a.a. (1.6) 
N ~ o o  

i = 1  

In statistical physics this property is often called the self-average of the 
maximum Lyapunov exponent. Moreover, using the multiplicative ergodic 
theorem of Oseledec tS) with the previous requests, one can introduce 
another self-averaging Lyapunov exponent, 2 2 ~< 2t, which can be defined 
by the relation 

2 , + 2 2 =  lim l l n ] d e t l ~ I A /  = l n ( 2 s i n h 2 l J I )  
N ~ o o  i = 1  

(1.7) 

In order to have /~2 finite, we will always require that the right-hand side 
of (1.5) is finite, together with the requests of the Furstenberg theorem, i.e., 
that / t (J ,  h) is irreducible and (1.5). It is thus sufficient that the J distribu- 
tion has no delta function in J = 0 .  Notice that (1.5) implies that/z(J,  h) 
tends to 0 faster than (IJl" Ih[) -2 in the limit IJI--* ~ or Ihl ~ ~ .  

2. THE M A P  

In this section we derive a deterministic map of the couplings J i  and 
the magnetic fields h; of the one-dimensional random Ising model. To 
achieve our goal, the partition function Zu  should be written as 

Z N  = 2 N eJi~ioi§ t + hioi 

~ i =  I / {of} 

where the average (. . .) /o,} is performed over the 2 ~ spin configurations 
{a;}. Let us now introduce a second set of spinlike variables {r,.} so that 

e Jioioi+l = e-lJ~l(e r'§162176247 ~§ (2.1) 

3 There is no nontrivial subspace V of R" such that A(V) = V for p(J, h)-almost all A. 
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where 

" 1 
c.g/=~ cosh-  l(e 2 

J, 
ILl 

Is,-1) 

Vi=I  ..... N (2.2) 

and therefor c~ i is a nonnegative real number. By means of (2.1), and 
performing the average over {ai}, we find for the partition function ZN 

Z N = 2  N e-IJ~l cosh(%_ i ri + %~;r;+ l + hi) 
i / { ~} 

(2.3) 

We have thus obtained a partition function which is linear in the spin 
variables instead of being bilinear. The partition function (2.3) can again be 
calculated as the trace of a product of appropriate transfer matrices, since 
it is always possible to find a set of constants { Wi, X,., Y;, Zi} which 
satisfy the identity 

cosh(C~i-l'Ci+ c~i~iri+l + h i ) = e  w'+x'~'+ r,~,+,+z,,,~,+, (2.4) 

Inserting (2.4) in (2.3), it follows that 

Z ~ = e x p  ( W i - I J A )  Tr 1-I Al l) (2.5) 
i 1 i f f i l  

where A~ 1) are the random transfer matrices of a new one-dimensional 
Ising model with nearest-neighbor couplings {Jl 1)} and external magnetic 
fields {h~ 1)} given by the deterministic map RNx RN--* •Nx RN: 

{ j~l) = Zi  = g,(  xyg(xCgi_ 1 + Y%. + h;))x.y 

h~l) = X'i -I- Yi-1 (2.6) 

= (xg(xCgi l + y % + h ; )  +x~i_l  g (x%_l  +yC~i_2+hi_l))x.y 

where g( z )=In  cosh z, and x =  -I-1 and y =  -I-1 with equal probability are 
two auxiliary random variables introduced only to obtain a more compact 
expression of the formulas. Let us stress that the variable 14I,. does not 
appear in the map. Although possible, it is not convenient to compute it in 
order to obtain a formal expression of the Lyapunov exponents, as we 
discuss in the next section. 

It is important to notice that the new coupling J l  1) depends on J ; - l ,  
Ji (through cg i_ i, ~g,-), while the new field h~ 1) is a function of J , -2 ,  J i - i ,  
J;, hi_ i, and hr  In other terms the quenched variables of the transformed 
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system on a site depend on the quenched variables of the original systems 
in the same site and in two neighbor sites. As a consequence they are no 
longer independent random variables. It is also easy to check that J~)  has 
the same sign of J~. 

The original system with couplings and fields { J ,  h;} can be thought 
of as the initial step n = 0, and its various quantities are indifferently 
written with or without the 0-superscript, i.e., 2~~ j to)=j~,  
W~ ~ W i, and so on. 

3. F O R M A L  EXPRESSION OF THE LYAPUNOV EXPONENTS 

( N Ai) and Relations (1.1) and (2.5) show that the two matrices 1-I;=~ 
(I-I~=l AI 1~ exp(Wi-J i ) )  have equal trace. A direct inspection shows that 
they also have equal determinant, so that they are similar. As a conse- 
quence, taking the limit N ~  ~ ,  one can directly relate 2~ and 22 to 2~ ~ 
and ~.t2~ (the Lyapunov exponents of the product of matrices A il~))." 

;t, + 22 = 2t, ~) + 2{2 ') + 2( i f ' -  IJI) 
(3.1) 

2 ~ - ; , 2 =  ;t~l~- 2~ 1~ 

Let us notice that every mean value, such as, for example, IJ;I, does not 
depend on the site i, which is omitted.__Moreover, 2~ l) and 2t2 ~) are well- 
defined self-averaging quantities, since [JI < ~ and i f '<  ~ [see (1.5) and 
Appendix C, proof4]. Equation (3.1) can be simplified by recalling the 
expression (1.7), which is valid both for n = 0 and n = l, so that 

2 ~ ) "  ~ ~") = In(2 sinh 2 ]jc~>[) (3.2) 1 ~ ~ 2  

We can now iterate the map n times, using again (3.2) and the fact 
that the difference of the Lyapunov exponents is invariant, to obtain the 
expression 

I 1 sinh 2 [J[ 
21 = ~ l n  - - -  +2~") 

si~-ff-2- i jr i 

�9 sinh2 IJI +2~,, ~ ( 2 2 = ~  (3.3) 
m sinh 2 ]J~")[ 

where 2~ ~) and 2(2 ~ are the Lyapunov exponents of the system after n itera- 
tions of the map (2.6), and we have assumed that ]J~")[ < oo and W~"~< 
(see Appendix C, proofs 1 and 4). Moreover, they are still self-averaging, as 
shown in Appendix C, proof5. The coupling J~)  is a function of n +  1 
initial couplings and n initial magnetic fields, while the magnetic field h (~ 
depends on n + 2 couplings and n + 1 fields. 
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Let us take the limit n ~  ~ :  the sequence ln(sinh 2 [J<"~l) is nonin- 
creasing in n (see Appendix C, proof8),  and so it is convergent, since 
2] n)1>0. As a consequence, l i m , ~  2] n~ exists, and it turns out to be 
(proof 10) 

lim 2~")= lim ln (2coshJ  ~")) (3.4) 
n ~ o ~  n ~ o T ,  

The expression of the Lyapunov exponents is thus 

21 = �89 ln(2 sinh 2 [JI) - �89 In tanh J*  

22 -- �89 In(2 sinh 2 [J[) + �89 In tanh J*  

with J*  > 0 such that 

(3.5) 

In tanh J*  = lim In tanh IJ<")l (3.6) 
n ~ o ~  

Unfortunately, we are not able to give the form of J*  in terms of known 
functions. However, from a numerical point of view this result allows one 
to give a very good estimate of the Lyapunov spectrum by a truncation of 
the sequence at finite n. In the next section we shall show that these 
estimates are also a lower and an upper bound of 21 and 22, respectively. 

4. R I G O R O U S  B O U N D S  OF THE L Y A P U N O V  E X P O N E N T S  

In the previous section we have found a formal expression of the 
Lyapunov exponents (3.5) in terms of the limit of the sequence 
In tanh [Jt")[, (3.6). Indeed it is sufficient to stop at finite n to get rigorous 
bounds for 21 and 22. In fact the sequence In tanh [Jr")[ is nonincreasing in 
n (see Appendix C, proof6),  so that (3.5) implies 

21/> �89 ln(2 sinh 2 [J[) - �89 In tanh IJr 

22 ~< �89 ln(2 sinh 2 IJI) + �89 In tanh IJ'~l 
(4.1) 

The previous bounds of the Lyapunov exponents converge monotonously 
to 21 and 22 in the limit n ~ oo. 

In order to give rigorous bounds for the Lyapunov exponents in the 
opposite direction, let us apply the map (2.6) n -  1 times. At the nth step 
we modify the relation (2.1), changing two signs as follows: 

exp(J I" - ' ) a , a ,  +1 ) = (exp ]J r ' 'l )( exp [ r, +, ~r ' ) (~ ,a ,  - ai  +, )] ) ~,+, 
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so that ~ " )  is an imaginary quantity: 

c~,,-,) = �89 cosh - ' [ exp ( - -2  ISl."-')l)] 

Going on as before, we find a new deterministic map: 

{ .7~ ")= - ~i(xyg(x#~"--1 ' )+  Y#I ' - I )  .31_ h~,, l I ) ) ) X , y  
~,,) ( - ( , -  1) ~(,,- ~) 

= _xg(xCr +yCg, + h l . - , ) )  (4.2) 
+x~i_ ,  -(,,- l) + y ~ , , ~  J) g ( x ( ' ~ i ' _ l  _ +h~%-1 ))).~..,, 

where {Y~")} and {hl"'} are, respectively, the couplings and the magnetic 
fields of a new one-dimensional Ising model with Lyapunov exponents 
{2~')} and {2(2")}, related to 2, and 22 by 

1 2 1 = ~ I n  s inh2lJ '  +~,,,) 
sinh 2 IY(")I 

1 sinh 2 IJI 
2 2 = ~ In + ~(,") 

sinh 2 [J(")l - 

It is easy to show that every h~") is an imaginary quantity [the map (4.2) 
is an application of ~NXRN--*RN• and therefore the following 
inequalities hold: 

{ 2]") ~> In(2 cosh IY(")I) 
~.~") ~ In(2 cosh lY(")I) 

that is, 

{ 21 ~< �89 In(2 sinh 2 lJl) - �89 In tanh lY(")I 
(4.3) 

22/> �89 ~ 2 IJI) + �89 In tanh lY(") I 

Combining these results with (4.1), we have obtained upper and lower 
bounds of the Lyapunov spectrum. In Appendix C, proof 11, we show that 
also these new bounds (4.3), as well the previous ones (4.1), converge to 
the Lyapunov exponents 21 and 22 in the limit n--, oo, that is, 

lim In tanh l J(") I = In tanh J*  (4.4) 
n ~  o 0  

The relations (4.1) and (4.3) represent a practical tool for calculating 
the Lyapunov exponents of a one-dimensional random Ising model when 
the couplings and the magnetic fields are discrete random variables with 
few possible values. As an example, we have considered the case with con- 
stant couplings J,. = J and binomial magnetic fields h,. = H i  h (H~> 0, h > 0, 
where the signs + are chosen with equal probability). In Fig. 1 we plot the 
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Fig. 1. Random Ising model with constant couplings Ji = 1 and magnetic fields h~ = 1 ___ h 
with equal probability of  •  relative difference of the upper and lower bounds of the 
maximum Lyapunov exponent ).~ after n = 15 iterations, as a function of h. 
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Fig. 2. Random Ising model with constant couplings Ji = I and magnetic fields h+ = 1 + 1 
with equal probability of + :  relative difference of the upper and lower bounds of the 
maximum Lyapunov exponent 2~ as a function of n, the number of  iterations (log-linear 
scale). 
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relative difference of the two bounds (4.1) and (4.3) of the maximum 
Lyapunov exponent 2] as a function of h for n =  15, J =  1, and H =  1. 
Notice that after n = 15 iterations the relative error is, in the worst case, 
about 10 -3. Our results allow one to get estimates which have a precision 
higher than standard Monte Carlo simulations.(2) Moreover, we are able to 
find rigorously the interval where the Lyapunov exponents fall. Finally, let 
us stress that the convergence in n is quite fast; see, for instance, Fig. 2 for 
the case J =  1, H =  1, and h = 1, where the relative error exponentially 
decreases with n. 

APPENDIX A 

In this paper we have always performed the thermodynamic limit 
N--* oo before the limit n ~ 0% where n is the number of iterations of the 
map. The exchange of those limits allows us to characterize the variable J *  
introduced in Section 3. 

In this order of things we have to consider the system with a finite 
number N of sites. Calling J'I,N, )~2,N the Lyapunov exponents in this 
context, and ~(") ~(") the same quantities after n iterations of the map, we "~ I ,N'  A2, N 
find the following relations: 

, 1, sinh 2 [J[ .a_ ~,,) 
A I , N = ~  m sinh 2 [J(")l --~I,N 

1 - - ~  ~(.) 
(A.1) 

where the averages involve the N initial couples {J;,hi} if n>~N-2. 
Similar arguments to those of Section 3 assure that these relations are 
meaningful. 

Let us restrict the ensemble of initial disorder realizations as follows: 

{IJil Vi = 1,..., N 
< sup coN 

Ih,I < sup con 

where co N is defined by the following relation: 

f +~~ dhl, t(J,h)<~l Nl+p, p > 0  
--r  N --CO N 

in such a way that the restricted ensemble of N independent couples 
{Ji, hi} has probability one for N ~  ~ .  Moreover, it is easy to show that 
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the Lyapunov exponents 2t and 2 2 do not vary with this restriction, as well 
as In sinh 2 IJI, in the limit N ~  oo. 

For all the initial disorder realizations of the new ensemble, the map 
(2.6) converges for n ~ oo to a fixed point (see Appendix B) of type 

f j (n) = ~i j .N)  nlim - i 
V i=  1 ..... N 

h i = 0  

with J~N~ >/0 depending on the intial values {Ji, hi} ,.= 1,..., ~. The fixed point 
corresponds to a product of random independent matrices of the form 

A~ ~176 (e_e,j~.^, , e-e'JCN'~ 

By means of this, in the limit n --, ~ the relations (A.I) become 

I ' ' ~ 
2~,N=~ln(2 sinh 2 IJI) ~  tanh J~N~ + In(1 _+ t a n h ~ J ~ )  

(2~.N 1 o 1 .o 1 (A.2) 
~ ln(2 sinh 2 IJI) + ~ l n  tanh J/~N~ - -~ ln (1  + tanhNJ~N~) ~ 

were the sign _+ in the last term of both expressions is equal to I - I f~  ~ ,  
and the circles recall the restriction of the ensemble. 

Now we perform the thermodynamic limit ( N ~  oo). As previously 
discussed, 27, ~ and 2~ N converge to the Lyapunov exponents ,t, and 22, 
while In sinh 2 [JI ~ tends to In sinh 2 IJI. The results of Appendix C can be 
easily estended to the case with finite N and restricted ensemble. That 
allows us to show that the last term of both the expressions of 22,N and 
22.N vanishes in the thermodynamic limit, so that 

-o 
lim In tanh J~NI = In tanh J*  (A.3) 

N ~  

where J*  is the coupling defined at the end of Section 3. It is also simple 
to see that limN~ ~ In tanh J~'N) has necessarily the same value for a set of 
initial disorder realizations {J;, h~}i= l ...... of probability one. In conclu- 
sion, we have 

J * =  lim J~'N~= lim lim j~,,i Vi, /l-a.a. (A.4) 
N ~ o o  N ~ o e  n ~ c o  

This result is important from a theoretical point of view, although it is rather 
too slowly convergent to be useful in a numerical calculation in contrast with 
(3.6) and with the upper and lower bounds obtained in Section 4. 
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A P P E N D I X  B 

In this appendix we prove the convergence of the map (2.6) for finite 
N sites. It is more convenient to consider the variables {cd~")} instead of the 
couplings {J~")} of the nth system (i.e., the system after applied the map n 
times). We recall that these variables are related by 

cosh 2cr ") = e 2 I'#~")1, Vi  = 1 ..... N 

and that all the c.g~.) are nonnegative real numbers. Let us briefly give the 
outlook of this appendix: we first prove the convergence in n of max~ c.g~.) 
and min;Cr ") to the same value c-g~'g), which ensures the convergence of 
every single cr to cg~' m. Then we consider the absolute magnetic field 
Ih~")l, which tends to 0 in the limit n---, oo. Let us stress that we always 
consider an initial disorder realization {J~, h;} such that 

max cd(i")< oo, max Ih~")[ < oo 
i i 

From (2.6) one can derive the iterated relation 

2h~"' + cosh(2Cr ' '  + 2c-g~'2 0_] ,/2 cosh 2 ~  "+ 1)= [cosh (") o,) (,,) 
(n)  (n )  (n )  L cosh 2h~ +cosh(2Cd~ - 2 % _ ~ ) J  (B1) 

and {Jl  ~  Ji, h~ ~ h;} represent the couplings and the magnetic fields of 
the initial system. 

From (B1) the following inequalities hold: 

+,, r + oos,< =<<,..> + =,<,._,, >1 ' "  

L 1 

that is, 

c~ ") + ~-1)(") 
cosh(cd~") - cr 1 ) 

~< c o s h ( ~  ") + g'l"_), ) (B2) 

2 
(B3) 

Performing the maximum over i 

max r 1) ~< max c#l') 
i i 

Since maxiCr the previous relation proves the convergence of 
maxi cr to a nonnegative real number,  say cd~' m < oo. 
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In order to show the convergence of  min i cg~.), let us suppose that 

min cr ~ c# ~,N~ __ J .  (B4) 
i 

with di,, > 0. Since lim. ~ ~ maxj c~-) ~ ff~N), there exists e,, > 0 such that 

m a x  Cgl"'l <cg~m + e,,, Vn' >~n (B5) 
i 

Iterating (B3) N - -  1 times, one has 

i ~ ~ i - - k  
k = 0  

where the index k runs all over the N sites. Using (B4) for a site where the 
minimum of cg~,,) is realized, and (B5) for the remaining sites, and also 
performing the maximum over i, we find 

1 ( n + N - - l )  
maxi cgi < ~'N) + e. -- 2 N_------ 5 (e. + J,,) 

Keeping in mind that m a x i ~ l  " + N -  ~1>~ C~N~ ' we have that the following 
inequality holds: 

J . < ( 2  N - l -  1)e .  

which proves that lim . . . .  mini cgl") = cg~'N), and therefore 

lim ~ ' )  - ~* Vi = 1 ..... N ' ~ i  - -  u" ( N ) ,  
t z ~  

Recalling that every J~") keeps the initial sign (i .  it immdiately follows that 

(n) - -  ( i J * N )  ' Vi = 1 ..... N lim Ja - 
t t ~  co 

where J~N) is a nonnegative real number  with 

cosh 2cg~'m = e w&~ 

We have now. to  show that every magnetic field hl '~ converges to 0 in 
the limit n ~ oo. In this order of  things, from (B1) we obtain 

2c~i- 1 cosh 2 h~,, ) ~< sinh 2cK~ ") sinh (") 
sinh 2 2 ~ . +  i~ 

If cg~m > 0, the previous inequality is sufficient to reach our goal. 
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In the other case ~{'m =0 ,  recalling (B5), from the second equation of 
the map (2.6) we can get 

Ihl"+ ~) I < �88 In{ [cosh( Ihr I + 2e,,) cosh( Ih~")l + e,) 

x cosh(Jh~"_>tl +2e . )  cosh(lh~"__>l I + e,,)] 

x [cosh( Ih~"~l - 2e.) cosh( Ih~"~l - e,,) 

x cosh( [ h l ' ~  l I - 2e,,) cosh( Ih~'2 t I - e,,)] -1} 

Since 

cosh(  Ih~"~l + e.) ~< e 2.. 
cosh( Ih~"~l - e.)  

and similarly for the other factors, it immediately follows that 

which proves that 

Ih~"+ l>l <3e , ,  

lira Ihl"'l = 0  

APPENDIX C 

In this appendix we collect the proofs of several statements used in the 
text. Let us stress that the average of a quantity, say ~i, does not depend 
on the site i, which is often omitted. Moreover, we recall that the thermo- 
dynamic limit (N---, ~ )  already has been performed. As a consequence at 
the nth step the average is performed over n + 2 initial nearest-neighbor 
couplings and n + 1 magnetic fields. 

1. IJ ('+ 1) I ~< I J(") I < oo. Recalling (2.2) and (B3), one has 

IJl." + ')1 ,< �89 In cosh(Cg~") + (~ '~  I ) 

Using the convexity of the function In cosh(. ), we obtain 

!( I / ( " ) 1  IJl  "+ ')1 ~< �88 cosh(2Cgl ">) + �88 In cosh(2Cgl'~ l) -- 2,,~i , + IJl~,])  (C1) 

Averaging the previous expression, it immediately follows that 

I J("+ ')1 ~< IJl")l 

The quantity IJr is finite, since IJr176 < ~ ,  because of condition (1.5). 
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2. cg(,+l) ~<cd(,) < ~ .  Averaging (B3), we prove that  cg(,) is a non- 
increasing quantity in n. Moreover,  

In cosh 2cg ~') ~< In cosh 2(g (') = 2 l J ( ' )  I 

which ensures that (d (') is finite (see proof  1 ). 

3. IhC")l<~.  From the expression of h~ "+l) in the map (2.6) it 
follows that 

Ihl-+l)l 

1 1 cosh(2 Ihl"'l +2cdl'__)~)+cosh 2cg~ ") cosh(2 Ih~')l +2~l."))+cosh 2~'It~) I 
~< ~ n c o ~  ~ -2(d~'_) 1) +cosh  2cgl ")" cosh(2 Ih~')1-2cd~ ")) +cosh  2cg~'_) 1 

Since [cosh(a  + b) + c ]/[ cosh( a - b) + c] <~ e 2a for a, b, c/> 0, one has (see 
also proof  2) 

{h~-+'){ ~< 2(g(-) < 

4. W(")< ~ .  F rom (2.4) one finds the expression of W("): 

WtS~ ) = ( In  cosh(h~ m + x~5 ") + Yff~l)) .~,  y 

Since In cosh a ~< lal, and from proofs 2 and 3, we have 

W ~") ~< Ih(")l + 2cd (") < r 

5. 2] ") and 2(! ") self-average. We suppose that this property holds 
at the step n -  1. It thus suffices to prove that the maximum Lyapunov 
exponent  of each disorder realization [i.e., (1.3) without average] is a 
nonnegative and nonincreasing quantity in n. The first statement is easy to 
see, while for the second we have to show that Z~=1 ( W  I " - ~ ) - I J l " - ~ ) l )  is 
nonnegative. F rom the expression of WI "-1)  (see proof  4), and using the 
convexity of the logarithm, we have 

W ~ - l ) / >  1 1 ln(~ cosh 2cgl " -  1) + 1 ( . -  1) >~ ! t  Ir(- ~cosh2C~i_l ).~.2~,~i -1) I "4-1Jln_ll)l) 

which concludes the proof. 

6. In tanh IJ("+l)l ~<ln tanh l Jr") I. We first notice that 

cosh 2 ~  ") - 1 = tanh 2 cg~-) 
tanh [J~')l - cosh 2ff~ ") + 1 

822/80/I-2-24 
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Recalling the first part of (B2), we have that the following inequality holds: 

( .)  (n) (n) (n) cosh(Cg,. + c ~ i _ , ) - c o s h ( C ~ i  - - c ~ i _ l )  
tanh 2 rr + i) ~ . . . . . . . .  tanh rr tanh ~(") 

(,,) (n) (n) ( .)  c~ + cgi- 1) + c~ -- (gi- 1) ~ ; -  i 

Computing the logarithm and averaging, we obtain 

In tanh IJ ~"+ l) I ~< In tanh IJ(") I 

7. l n c o s h J ( ' + ~ ) ~ < l n c o s h J  ~). Taking into account (C1) and the 
convexity of In cosh(. ), one has 

In cosh J(" +1)<~ In cosh(�89 [J 12)1 + �89 [J ~ 1) <~ In co sh J I-") 

8. In s inh2 IJr ~<insinh2 IJt")l . Since 

In sinh 2 [J(")[ = In 2 + In tanh IJ("~l + 2 In cosh J~") 

from proofs 6 and 7, it follows that ln s inh2 IJr is a nonincreasing 
quantity in n. 

9. l i m , _ ~  Ih(">l =0. From the first relation of the map (2.6) the 
following inequality holds: 

cosh h~ ~ ~< 

The previous relation reads: 

sinh 2cg~ ") sinh 2(6r 1 
sinh 2 2cg~. + 1) 

In cosh h c') ~< In sinh 2ff ~'~ - In sinh 2c~ t~ + i) 

= [y(,)[ _ [y(,+ I)[ + �89 In sinh 2 [Y")[ - �89 In sinh 2 [Y('+ i)[ 

Since IJ(~>[ and In sinh 2 [J(')l are converging sequences in n (see proofs 1 
and 8 and Section 3), the statement follows. 

10. l im ._  oo 2~ ") = l im,_  ~ ln(2 cosh J(")). The expression of2~ ") can 
be written as 

1 ) 
= h ~ . ) -  2~ ") lim In ~ exp J~n)cTiai+ 1 cosh i o iJ 

N ~  w {o} i 1 i 

and therefore 

2~-)>~ lim 1 ( ~  ) (-) = ln(2 cosh jt~)) N--ooNin ~ exp Ji  aiai+a 
{~} i I 
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On the other hand, 

2~ ''~< lim 1 ( ~  ) J i  lYiai+ 1 -{- Ih~">l = ln(2 cosh jc,,)) + ih~.~ I 
( a }  i I 

Since l im,~ oo Ih~")l = 0 (see proof9),  the statement is proved. 

11. l im,_ oo In tanh lY<")I =In  tanh J*. Let us consider the difference 
A, between In tanh IJl")l and In tanh lY~"~I. We recall that both couplings 
Jl  ") and Y~")came from the ( n -  1)th system {Jl " -  ~), hl"-i)} via the maps, 
respectively, (2.6) and (4.2). By means of this A,, can be expressed as 

A,, = in a' cosh 2hl" - ~) + 1 + (a 2 sinh 2 2hl"- ~ + bi) U2 

a~ + cosh 2h~"- t~ + (sinh 2 2hl..- 1) + bi)1/2 

with 

2h l . -  l)e2J~ +2J~_t e4Ji_l ~b i - -  2 cosh i.-zl ~.-,~ + e ~,'~'- ~1 + i . - .  

Since A. is a decreasing function of bi, one has 

in aiexp(2 [hl"- t)[) + 1 ~<2 [h~"-I)l 
A.~< ai + exp(2 [hl"- I)]) 

Since lim . . . .  ]h<")[ = 0 (proof 9), it follows that 

lira In tanh lY~")I -- lim In tanh [J~")] = ln  tanh J*  
n ~  o o  n ~  o o  
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